

Atmospheric Dispersion Modelling Liaison Committee (ADMLC)

Dense gas dispersion modelling in complex terrain, with a focus on carbon dioxide pipelines

ADMLC Webinar, 14:00-17:00 GMT, Tuesday 7 March 2023

Simon Gant (ADMLC Chair, Health and Safety Executive)

ADMLC Membership

ADMLC Recent News

- January 2021: "Guidelines for the Preparation of Short Range
 Dispersion Modelling Assessments for Compliance with Regulatory
 Requirements" An Update to the ADMLC 2004 Guidance
 https://admlc.com/model-guidelines/
- July 2021: Report published on "Dense-gas dispersion for industrial regulation and emergency response" by Rachel Batt (HSE)
 - Spreadsheet of datasets for model validation
 - Spreadsheet of previous incidents
 - https://admlc.com/publications/
- September 2021: Report published on "A Review of Approaches to Dispersion Modelling of Odour Emissions and Intercomparison of Models and Odour Nuisance Assessment Criteria" by CERC and ELLE https://admlc.com/publications/

ADMLC Recent News

- Ongoing: "Investigating the impact of applying different grid resolutions of numerical weather prediction met data in atmospheric dispersion modelling"
- Project commissioned with CERC and UKHSA
- Scope:
 - Review of NWP models
 - Comparison of model endpoints for NWP datasets
 - Comparison studies for regulatory atmospheric dispersion modelling
 - Potential for double counting of the impact of terrain
 - Use of NWP met data for probabilistic accident consequence assessments
- Timeline: final report to be issued to ADMLC in June 2023

ADMLC Recent News

- Future work: "Review of methods used to assess the performance of atmospheric dispersion models"
- Scope:
 - Literature review
 - Case studies
 - Guidance on application of model evaluation methods to different scenarios
- Closing date for expressions of interest: 10 March 2023
- http://www.admlc.com/work

ADMLC welcomes partnerships with other funding agencies or self-funding research organisations on topics of mutual interest

ADMLC Webinars

- May 2021: "Dispersion modelling and satellites"
- February 2022: "Use of dispersion modelling for sensor network design to facilitate source attribution, emissions estimation and incident response"
- Recordings available: http://www.admlc.com/events

Context for today's webinar

- Net Zero is currently driving a rapid growth internationally in Carbon Capture and Storage (CCS) projects
- Bulk transport of CO₂ by pipeline and/or ship

https://hynet.co.uk

https://eastcoastcluster.co.uk/

https://www.porthosco2.nl

https://norlights.com

Net Zero and CCS

Market ready CCUS projects: https://zeroemissionsplatform.eu

CO₂ Pipeline Research

- Significant research into CO₂ pipeline safety in period 2005-2015
 - e.g. COOLTRANS, CO2PipeTrans, COSHER, MATTRAN projects
- CO₂ is either a vapour or solid at atmospheric pressure
- Sublimation temperature -78°C at atmospheric pressure
- Vapour density 2.3 times greater than air at -78°C
- Cold CO₂ gas from pipeline release would tend to flow along the ground, collecting in low-lying areas
- Toxicity (https://doi.org/10.1186%2Fs12245-017-0142-y)
 - Concentration > 5% v/v: hyper-ventilating, confusion, lethargy
 - Concentrations > 10% v/v: convulsions, coma, death

Pipeline Risk Assessment and Emergency Planning

- Satartia, Mississippi CO₂ pipeline incident in 2020 demonstrated that terrain can influence dispersion of dense CO₂ clouds
- Can dispersion models take into account terrain effects for pipeline risk assessment and emergency planning?
- Different modelling approaches:
 - Integral, Gaussian puff, shallow-layer, Computational Fluid Dynamics (CFD),
 hybrid CFD/mass-consistent models, Lattice Boltzmann, emulators, correlations
- Example of modelling requirements:
 - 100 km long pipeline, model release location every 50 m = 2,000 runs
 - 4 release diameters (25 mm, 75 mm, 110 mm, full bore) = 8,000 runs
 - 12 wind directions = 96,000 runs
 - 4 weather classes (F2.4, D2.4, D4.3, D6.7) = 384,000 runs
- If each dispersion simulation takes 1 minute computer run-time:
 - 384,000 minutes = 267 days run time
- If each simulation took 1 hour, then it would require 44 years run-time

Model Validation

- Do we have sufficient field-scale experimental data to validate densegas dispersion models with terrain?
 - See review by Batt (2021) http://www.admlc.com/publications
 - Burro 8 trial: LNG spill on water
 - https://doi.org/10.1016/0304-3894(82)80034-4
 - COOLTRANS CO₂ trials at DNV Spadeadam
 - Allason et al. https://doi.org/10.1115/IPC2014-33384
 - Jack Rabbit I chlorine and ammonia trials
 - 2 m deep, 50 m diameter shallow depression
 - https://www.uvu.edu/es/jack-rabbit/
 - Picknett (1981) refrigerant trials at Porton Down
 - https://doi.org/10.1016/0004-6981(81)90181-5
- Cannot be confident in model predictions without reliable validation data

© LLNL

© National Grid / DNV

Webinar Programme

14:00 – 14:15	Simon Gant Welcome and introduction
14:15 – 14:30	Max Kieba (PHMSA) "Introductory remarks and review of the Satartia CO ₂ pipeline incident"
14:30 – 14:50	Dan Allason, Ann Halford and Karen Warhurst (DNV, UK) "Carbon dioxide pipeline experiments and modelling"
14:50 – 15:10	Lauris Joubert (INERIS, France) "Experimental campaign of massive CO ₂ releases in urban areas"
15:10 – 15:30	Chris Dixon (Shell, UK) "Development of a shallow-layer model for dense-gas dispersion"
15:30 – 15:40	BREAK
15:40 – 16:00	Sam Wang (Texas A&M, USA) "Determination of potential impact radius for CO ₂ pipelines using machine learning approach"
16:00 – 16:20	Mike Brown (Los Alamos National Laboratory, USA) "QUIC mountainous terrain and dense gas capabilities"
16:20 – 16:40	lan Sykes (Xator Corporation) "SCIPUFF modelling of dense-gas dispersion"
16:40 – 17:00	DISCUSSION

Times are GMT

Webinar Programme

Webinar is being recorded on video
Slides and video will be made available on the ADMLC website

- Please mute your microphone if you're not speaking
- Please add any comments/questions for the discussion session in the chat window
- Please raise your hand if you would like to speak in the discussion session

PRESENTATIONS

Further Discussions?

Would you like to be involved in further discussions on the topic of dense-gas dispersion in complex terrain and CO₂ pipelines?

With a view to a potential collaborative future Joint-Industry Project on:

- 1. New field-scale CO₂ dispersion experiments in complex terrain
- 2. Model development and validation

If so, please let us know: admlc@ukhsa.gov.uk

simon.gant@hse.gov.uk

martin.thomson@hse.gov.uk

zoe.chaplin@hse.gov.uk

Aiming to hold a follow-up Teams meeting if there is sufficient interest

ADMLC Seminar, 4 October 2023 UKHSA, Harwell, Nr Oxford

Dry deposition and surface chemical reactivity

Speakers:

- Steven Hanna (Hanna Consultants)
- Jon Pleim (US EPA)
- Tom Spicer (University of Arkansas)
- Jenny Stocker (CERC)
- Nebila Lichiheb (NOAA)
- Eiko Nemitz and Benjamin Loubet (UKCEH and INRAE)
- Helen Webster (Met Office)
- Oscar Bjornham (FOI)
- Roy Wichink Kruit (RIVM)

Details to be announced shortly...

Thank you

Thanks to all our presenters and the ADMLC Secretariat for organising this webinar

Justin Smith and Peter Bedwell (UKHSA)

We would welcome feedback: admlc@ukhsa.gov.uk

- What worked well?
- What could we improve?
- Breakout networking sessions during the coffee break?
- Future ideas for ADMLC webinars?